Reply to "Planned Analyses of the REDUCE MRSA Trial"

Kevin T. Kavanagh, Daniel M. Saman and Yanling Yu


Updated information and services can be found at:
http://aac.asm.org/content/58/4/2486

REFERENCES
This article cites 5 articles, 2 of which can be accessed free at:
http://aac.asm.org/content/58/4/2486#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Reply to “Planned Analyses of the REDUCE MRSA Trial”

Kevin T. Kavanagh,a Daniel M. Saman,a,b Yanling Yuc
Health Watch USA, Somerset, Kentucky, USAa; Essentia Institute of Rural Health, Duluth, Minnesota, USAa; Washington Advocates for Patient Safety, Seattle, Washington, USAc

In response to the comment by Huang and Platt (1) on our previous report (2), we point out that the ethical principles of trial registration can be traced back to the Declaration of Helsinki and require that the results of research involving human subjects be publicly available (3). As aptly stated by Alastair Wood (3), “... basic principles of evidence-based practice require the analysis of all data on a given topic; the practice of publishing only some results, but not others, undermines our collective ability to make rational decisions about medical care.” Reporting of data is regulated by section 801 of the FDA Amendments Act (3). Publication bias is created if only studies with results in a single direction, usually positive, are published. Thus, trial registration serves as a mechanism to help ensure that all metric results are available to the public. Many journals will not publish unregistered clinical trials. Data regarding trial registration are available online at http://clinicaltrials.gov/.

The REDUCE MRSA study (4) had several changes in the recorded metrics more than 6 months after the study completion date (Fig. 1). Central-line-associated bloodstream infections and urinary methicillin-resistant Staphylococcus aureus (MRSA) cultures were deleted. The lead author has given assurances that these deletions were done prior to trial completion and before data analysis; thus, publication bias did not exist. The lead author also stated that these results will be published in the future. It would have been best not to have deleted the ClinicalTrials.gov metrics.

In addition, during the revision of the REDUCE MRSA study’s metrics on the ClinicalTrials.gov website, the metric of “ICU-attributable all-pathogen bloodstream infection” was added. Such additions should be done with caution. For example, if the threshold for statistical significance is 1 in 20 and, hypothetically, if after a trial 20 items are looked at, by chance, 1 may be positive. Thus, the decision to report such events after a trial has commenced needs to be clearly identified in Materials and Methods.

We feel that if the practice of not reporting, eliminating, or adding metrics after trial initiation by researchers stating that they...
did not analyze or look at the data became widespread, the effectiveness and utility of trial registration would be negated and the system would become next to useless.

Having said that, we do believe that treating everyone may have short-term benefits. The study by Huang et al. is supported by the recent work of Derde et al. (5), who observed a significant decrease in MRSA infections with improved hand hygiene and unit-wide chlorhexidine decolonization protocols. There was not a significant decrease in vancomycin-resistant Enterococcus or Enterobacteriaceae isolates. The caveat to this approach is the possibility of the development of bacterial resistance, which may take over a decade to appear (6). Disturbingly, Derde et al. reported a 13 to 14% incidence of MRSA resistance to chlorhexidine (5). The wider effect on the microbiome of both the patient and the facility is unknown. But using protocols that indiscriminately and frequently cause mass destruction of bacteria should be done with caution. A better approach may be to use surveillance to target such interventions toward pathological bacteria while minimizing the effect on commensal and beneficial bacteria.

REFERENCES


